

Ney ligures environment

Climate protection and air quality

Climate protection

DOWNLOAD

Key figures environment (XLS)

Dynamic

↓ Download

CO ₂ emission	ns from ene	rgy consum	ption (in	1,000 t)
GRI 305-1/-2					

market-based* CO ₂ indirect (Scope 2) – location-based* Total – market-based*		2,938	2,955	2,934	2,516
CO ₂ indirect (Scope 2) -					
2	2,171	2,141	2,041	1,985	1,706
CO, indirect (Scope 2) -		1,882	1,763	1,687	1,276
CO ₂ direct (Scope 1)	1,060	1,056	1,192	1,247	1,239
	2015	2016	2017	2018	2019

* Since 2016, the "market-based" and "location-based" accounting approach have been implemented in accordance with GHG Protocol Scope 2 Guidance. Since then, the market-based approach has been the standard accounting approach. The historical data for 2006-2015 were calculated using a method similar to the location-based approach.

Specific CO₂ emissions (in kg/vehicle)*

GRI 305-1

	2015	2016	2017	2018	2019
Cars – CO ₂ direct (Scope 1)	252	245	250	267	279
Cars – CO ₂ indirect (Scope 2) – market-based**	652	611	565	562	431
Total – Cars – Scope 1 & 2	904	856	815	829	711
Trucks – CO ₂ direct (Scope 1)	642	746	663	629	676
Trucks – CO ₂ indirect (Scope 2) – market-based**	1,399	1,286	1,084	933	834
Total – Trucks – Scope 1 & 2	2,041	2,032	1,747	1,561	1,510
Vans – CO ₂ direct (Scope 1)	399	372	340	355	346
Vans – CO ₂ indirect (Scope 2) – market-based**	275	201	157	196	160
Total – Vans – Scope 1 & 2	674	573	497	551	506
Buses – CO ₂ direct (Scope 1)	1,169	1,408	1,177	977	1,083
Buses – CO ₂ indirect (Scope 2) – market-based**	1,416	1,421	1,059	948	911
Total – Buses – Scope 1 & 2	2,585	2,829	2,236	1,924	1,994

* excl. $CO_{_2}$ from liquid fuels

** Since 2016, the "market-based" and "location-based" accounting approach have been implemented in accordance with GHG Protocol Scope 2 Guidance. Since then, the market-based approach has been the standard accounting approach. The historical data for 2006-2015 were calculated using a method similar to the location-based approach.

Air quality

🖌 Download

	• •	/* • • •	
Air	emissions	(in t)	
		(

GRI 305-7

	2015	2016	2017	2018	2019
Solvents (VOC)	7,321	7,971	7,735	7,929	7,506
Sulfur dioxide (SO $_2$)	39	33	57	61	60
Carbon monoxide (CO)	2,898	2,843	2,203	2,515	1,962
Oxides of nitrogen (NO _x)	1,071	1,243	1,185	1,050	1,568
Dust (PM)	197	198	150	182	228

Dynamic

↓ Download

Specific solvent emissions (VOC) (in kg/vehicle)

	2015	2016	2017	2018	2019
Cars	1.21	1.31	1.18	1.37	1.47
Trucks	7.43	9.08	8.23	7.55	6.90
Vans	3.73	4.36	3.99	3.52	3.98
Buses	14.71	18.04	10.19	10.62	11.23

Resource conservation

Energy

Download

Specific energy consumption (in MWh/vehicle)*

GRI 302-1 GRI 302-3

	2015	2016	2017	2018	2019
Cars	3.02	2.99	2.96	3.12	3.22
Trucks	6.37	7.41	6.53	6.03	6.36
Vans	3.14	2.96	2.68	2.92	2.84
Buses	9.83	11.68	9.78	8.49	9.32

* excl. liquid fuels. The specific values are calculated as the quotient of the absolute energy consumption of our consolidated production sites and the number of vehicles produced – in relation to the respective division. Consumption also takes into account power units, parts and CKD sites. The unit numbers include only Daimler's own vehicles (excluding third-party products). The specific figures published here differ in some respects from the values used for our Group targets for reducing specific energy consumption per vehicle by 2030.

- The target program of our Mercedes-Benz Cars division takes into account the additional energy losses resulting from the expansion of the central energy generation plants (CHP plants).

- The target program of our Mercedes-Benz Vans division for the period 2013-2016 also includes the production othird-party products at our own sites.

Energy consumption (in GWh)

GRI 302-1

Total	10,940	10,895	11,340	11,607	11,287
Fuels*	296	251	726	834	857
Coke	55	50	54	54	45
LPG	92	92	94	83	72
Heating oil	85	100	106	114	102
District heating	884	961	909	821	815
Natural gas	5,075	5,105	5,167	5,316	5,289
Electricity	4,452	4,336	4,284	4,384	4,107
	2015	2016	2017	2018	2019

* Since 2017, in addition to fuel use in test benches and emergency power generators, fuel consumption in company-owned vehicles is also balanced.

Water

Water consumption (in 1,000 m³)

GRI 303-3

Total	14,966	15,104	14,014	14,381	13,486
Rainwater	142	127	64	99	63
Surface water	744	747	183	185	155
Well water (derived on site)	5,253	5,528	5,490	5,205	4,568
Water (externally supplied)	8,826	8,702	8,277	8,893	8,699
	2015	2016	2017	2018	2019

Dynamic

↓ Download

Specific water consumption (in m³/vehicle)*

	2015	2016	2017	2018	2019
Cars	4.18	3.97	3.62	3.88	4.06
Trucks	9.98	12.04	10.01	9.34	9.30
Vans	4.46	4.66	4.03	4.11	3.70
Buses	15.24	18.85	15.94	15.37	17.34

* The specific values are calculated by dividing the absolute water consumption of our consolidated production sites by the number of vehicles produced – in relation to the respective division. Consumption also takes into account aggregate, parts and CKD sites. The number of units includes only Daimler's own vehicles (excluding third-party products). The specific figures published here differ in some respects from the figures used for our Group targets for reducing specific water consumption per vehicle by 2030:
The target program of our Mercedes-Benz Vans division for the period 2013-2016 also includes the production ofthird-party products at our own sites.

Total	9,237	8,526	9,038	10,041	9,289
Indirect discharge	8,187	7,836	7,928	8,653	7,964
Direct discharge	1,050	690	1,110	1,388	1,325
	2015	2016	2017	2018	2019
GRI 306-1					

Ο

Dynamic

Download

					V 501
Direct discharge of waste w GRI 306-1	ater (in kg)				
	2015	2016	2017	2018	2019
Chemical oxygen demand (COD)	39,189	40,381	40,249	57,000	37,631
Zinc (Zn)	129	109	118	161	88
Nickel (Ni)	159	110	97	102	81
Total chrome (Cr_tot)	13	14	14	21	17

Waste

Waste by disposal method (in 1,000 t)

GRI 306-2

	2015	2016	2017	2018	2019
Non-hazardous waste for disposal	74	86	82	40	28
	74	00	02	40	20
Non-hazardous waste					
for recovery (without					
scrap metal)	269	223	239	318	303
Scrap metal for recycling	866	828	858	877	830
Hazardous waste					
for disposal	47	21	15	10	10
Hazardous waste					
for recovery	71	71	75	82	79
Total	1,328	1,229	1,269	1,328	1,249

↓ Download

Specific waste (in kg/vehicle)*

GRI 306-2

Dynamic

	2015	2016	2017	2018	2019
Waste Cars					
Non-hazardous waste for disposal	17.8	19.7	16.9	16.2	11.6
Non-hazardous waste for recovery	60.6	60.1	62.7	69.2	75.4
Scrap metal for recycling	361.5	340.6	348.7	359.7	346.1

HTP2 specific values are calculated as the quotient of the absolute amount of waste produced by our consolidated production sites and the number of vehicles produced – in relation to the respective division. Aggregates, parts and CKD sites are also taken into fOccush? The unit numbers only include Daimler's own vehicles (excluding vehicles of other manufacturers). The specific figures 2.1

Hazardous waste	2015	2016	2017	2018	2019
for recovery	28.3	26.0	26.7	30.4	32.0
Total	472.9	450.6	458.3	477.4	467.2
Waste Trucks					
Non-hazardous waste for disposal	74.2	108.0	91.2	12.8	11.4
Non-hazardous waste for recovery	212.0	215.3	208.6	316.0	306.1
Scrap metal for recycling	476.4	459.9	408.1	411.6	475.8
Hazardous waste for disposal	56.3	11.5	9.6	4.1	3.6
Hazardous waste for recovery	32.2	39.6	37.0	36.5	37.2
Total	851.1	834.2	754.5	780.9	834.0
Non-hazardous waste for disposal	12.1	10.5	16.0	9.7	7.0
Waste Vans					
Non-hazardous waste for recovery	59.4	35.7	30.4	47.1	41.0
Scrap metal for recycling	23.3	29.1	28.1	40.4	39.7
Hazardous waste for disposal	25.1	17.0	11.2	11.8	11.5
Hazardous waste for recovery	12.8	13.0	13.0	14.5	12.3
Total	132.8	105.2	98.9	123.4	111.5
Waste Buses					
Non-hazardous waste for disposal	98.0	92.3	84.2	60.2	29.8
Non-hazardous waste for recovery	311.7	389.8	320.4	308.2	345.7
Scrap metal for recycling	486.3	572.5	460.4	436.2	436.7

HTP2 and its values are calculated as the quotient of the absolute amount of waste produced by our consolidated production sites and the number of vehicles produced – in relation to the respective division. Aggregates, parts and CKD sites are also taken into fQcGUSP.938 unit numbers only include Daimler's Wey-vehicles (excluding Schicles of othermanufacturers). The specific figures 6.3

Hazardous waste	2015	2016	2017	2018	2019
for recovery	118.6	134.1	124.3	114.7	122.5
Total	1,110.8	1,306.1	1,003.5	930.2	940.9

* The specific values are calculated as the quotient of the absolute amount of waste produced by our consolidated production sites and the number of vehicles produced – in relation to the respective division. Aggregates, parts and CKD sites are also taken into account. The unit numbers only include Daimler's own vehicles (excluding vehicles of other manufacturers). The specific figures published here differ in some respects from the figures used for our Group targets for reducing specific waste for disposal per vehicle by 2030:

- The target program of our Mercedes-Benz Vans division for the period 2013-2016 also includes the production ofthird-party products at our own sites.

General information

Dynamic

↓ Download

Production figures (in vehicles)*

GRI 102-7

	2015	2016	2017	2018	2019
Cars	1,666,552	1,778,476	1,814,839	1,727,673	1,593,476
Trucks	508,353	413,348	476,443	524,930	482,056
Vans	292,206	328,149	345,151	358,476	369,191
Buses	28,776	24,833	28,518	31,233	32,257

 * Only from fully consolidated sites, without third-party products

Dv	n	aı	m	ic
υy		aı		i C

Download

Δ	r	Δ	а
_		C	a

	2015	2016	2017	2018	2019
Plant area (in km²)	48	48	49	52	51
Percentage covered by buildings (in %)	61	63	63	60	59

Dynamic

↓ Download

Environment-related costs (in \in M)*

	2015	2016	2017	2018	2019
Investments	91	155	87	98	100
Expenditures	418	431	447	406	444
Research & Development expenditures	2,392	2,707	3,308	3,726	4,594

* Mainly Germany

About this report

You can find general information about our reporting processes, the frameworks applied, and our contact information here.

More about this report

Report services

- > Downloads
- > Glossary
- > GRI Index

English

daimler.com

Sitemap

Provider & Legal Notice

Cookies

Privacy Statement

© 2020 Daimler AG. All Rights Reserved.